

The Pd Catalyzed Reactions of α-Bromo Acrylic acids with 1,3-Dienes to form γ-Lactones

Suresh Iyer,* C. Ramesh

Organic Chemistry Synthesis Division, National Chemical Laboratory, Pune, INDIA 411 008

Received 2 December 1998; revised 20 April 1999; accepted 27 April 1999

Summary: α-Bromo acrylic acids react with 1,3-dienes in the presence of Pd catalyst, ZnCl₂ and a base to give γ- lactones in moderate to high yields. © 1999 Published by Elsevier Science Ltd. All rights reserved.

 γ -Lactones are important synthetic intermediates found in several natural products and have been synthesized by different methods. We report in this communication, the reaction of 1,3-dienes with α -bromo acrylic acids to form γ -lactones in moderate to high yields. α -Bromo acrylic acids can be readily prepared from acrylic acids/esters by a bromination-dehydrobromination sequence.

Scheme-1

R: Ph, 2-Furyl, Me (Z isomer)

The bicyclic lactones formed from cyclohexadiene are cis (J = 6.35 Hz, ring junction protons). The stereochemistry of the exocyclic olefin in the lactones was confirmed by 2 D - NMR (NOESY experiment)

Table-1: Pd Catalyzed Reaction of α - Bromo Acrylic Acids with 1,3-Dienes

S. No.	α - Bromo Acid (1a -10a)	1, 3 - Diene	Product (1b - 10b)	Time, h	Yield, %
1	Ph Br OH (Z:E, 1.3:1)		Ph (E:Z, 3.3:1)	24	61
2	Ph Br OH	I	Ph (E:Z, 3:1)	23	51

NCL Communication No.: 6460

All products were characterized by IR, ¹H NMR and MS

of the **Z** isomer of **1b**. Comparison of the chemical shift of the vinylic H with the theoretical values also proved the geometry of the exocyclic olefin.²

Acknowledgements: We thank DST for a research grant and C. R is greatful to CSIR for a SRF and Dr. Rajmohanan for the 2D-NMR.

References

- (a) Ito, S.; Kodama, M., Heterocycles, 1976, 4, 595 (b) Harris, T. M.; Harris, C. M., Tetrahedron, 1977, 33, 2159 (c) Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Veragamini, P., Tetrahedron 1998, 54, 135.
- Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, John Wiley & Sons, 1974, 3rd ed., pg 22